If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x^2=19^2
We move all terms to the left:
5x^2+4x^2-(19^2)=0
We add all the numbers together, and all the variables
9x^2-361=0
a = 9; b = 0; c = -361;
Δ = b2-4ac
Δ = 02-4·9·(-361)
Δ = 12996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12996}=114$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-114}{2*9}=\frac{-114}{18} =-6+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+114}{2*9}=\frac{114}{18} =6+1/3 $
| k/3-9=-14 | | x+5.5=10.5 | | 0=2(3x)^2+18(3x)-14 | | 14(3x-18)=28 | | 0=16x^2-128x-50 | | x=+28 | | 50=-16x^2+128x | | 8x+4(x+10)=124 | | 4p+16=8p | | 5(x-20)=2x+2 | | 2x-7+3×=4×-6 | | -2x-5x=-6(5x+1)-2(x-3) | | 8m+6=7m+5 | | -2(-x-5)+5x+2=19 | | -2x-1/3=-41/15 | | R=25+-4r | | 1=x/120 | | m-7+8=-(1+8m)+4(m+3) | | -2x-(1/3)=(-41/15) | | w/5-6=-41 | | 27x+2+70=180 | | 2x-10=2x-+20 | | 8+1/7x=18 | | 10w=48+2w | | B+5=13,b | | 10(19)-10+y=180 | | 9x+10+x=180 | | -10=y/4+6 | | m-9=2m-12/3 | | $25.00-k=18.70 | | 8c=8(3.12) | | 64x+x=180 |